
Flowstate: A Language for Secure Replicated Computation
Priyanka Mondal Owen Arden

pmondal@ucsc.edu owen@soe.ucsc.edu
University of California, Santa Cruz

Challenges in a distributed environment
• Interactions in a distributed system span over multiple trusted domains.
• Interactions within a trusted domain are secure.
• There is mutual distrust among independent domains.

Information flow control in distributed systems
• Information flow and trust ordering can be used to prevent data leaks.

Lack of integrity and availability
•Problem 1: What if none of the workers is trusted enough to execute e ?
•Problem 2: What if the intended worker is unavailable ?

Replication of computation
•Replicate the computation at multiple workers.
• It increases trust, distribute the authority and increases availability.

Computation in Flowstate language
•Problem: Can not replicate the expression e directly, as the workers are having
different integrity labels.
Solution: Expression e is attenuated to the integrity level of the workers with a
translation function J K. If integrity of e is I then integrity of JeKw at worker w is
(I∨w). Translation function is defined over expressions, types, memory
locations, and security labels.
•Replication Scheme: W is called ’replication scheme’ which represents the
integrity (and availability) required for the computation to be successful.

• If an insufficient number of workers have latest data then their caches are
updated and the execution is restarted from the beginning.

Combined trust from the workers ensures correctness
•Multiple workers need to come to a consensus on their logs to commit the
changes. In this example (A∧ B)∨ (B∧ C)∨ (A∧ C) specifies that at least
two of the workers must have consistent (and available) log entries.
•Worker B is unavailable but still the commit is successful as combined trust
from A and C is enough to prove the correctness of the result.

Trade-off between integrity and availability
•W = (A∧ B∧ C) will not tolerate failure of B but it gives more computational
integrity, whileW = (A∨ B∨ C) will tolerate failure of two workers among
A,B and C but provides lesser computational Integrity.
•Programmers need to chooseW wisely based on the requirements of the
application they want to run.

Flowstate operational semantics
• Two kinds of operational semantics:
1.Global semantics: 〈e,, L, c〉 → 〈e′,′, L′, c〉
2. Local semantics: 〈e,, L[w] ,w〉 → 〈e′,′, L[w] ′,w〉
• Sync evaluation rules
1. 〈sync e@W : Z[] ,, [] , c〉 → 〈sync e@W : Z[JeKw1

@w1...JeKwn
@wn] ,, [] , c〉

where {w1, ...,wn} ∈ flatten(W)

2. If 〈sync e@W : Z[...ei@wi...] ,, L, c〉 → 〈sync e@W : Z[...e′i@wi...] ,′, L′, c〉

then 〈ei,, L[wi] ,wi〉 → 〈e′i ,
′, L[wi] ′,wi〉

3. 〈sync e@W : Z[...JvKwi
@wi...] ,, L, c〉 → 〈v,′, [] , c〉 - consensus on result.

4. 〈sync e@W : Z[...ei@wi...] ,, L, c〉 → 〈sync e@W : Z[JeKw1
@w1...JeKwn

@wn] ,′, [] , c〉

restart computation.

Flowstate type system
•Our typing judgment looks like ; pc;w; Z ` e : τ
• Sync typing-rule :
∀wi ∈ flatten(W).; pci;wi; Z ` JeKwi

: JτKwi
` pc v pci `Wa v Z c < pc

; pc; c; Z ` sync e@W : Z[] : τ

Future goals
• Instantiating Flowstate with consensus based systems and protocols like
Blockchain, State Channels, BFT etc.
•Beyond reads and writes: what can we do with higher-level abstractions for
distributed operations ?

References
[1] Andrew Myres. Lantian Zheng.

A language-based approach to secure quorum replication, plas’14.

[2] Jed Liu et. al.
Fabric: A platform for secure distributed computation and storage,sosp,2009.

[3] Zdancewic et. al.
Secure program partitioning.

1/1

mailto:pmondal@ucsc.edu
mailto:owen@soe.ucsc.edu

