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e Interactions in a distributed system span over multiple trusted domains.

e Interactions within a trusted domain are secure.

e There is mutual distrust among independent domains.

e Information flow and trust ordering can be used to prevent data leaks.
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e = let x =!p 1in
let y = !Iqg 1in

if (xzy)
then r=x

else r=y

e Problem 1: What if none of the workers is trusted enough to execute e ?
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e Problem 2: What if the intended worker is unavailable ?
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Problem 1

e Replicate the computation at multiple workers.

e |t increases trust, distribute the authority and increases availability.
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Problem 2

e Problem: Can not replicate the expression e directly, as the workers are having
different integrity labels.
Solution: Expression e is attenuated to the integrity level of the workers with a
translation function [ ]. If integrity of e is | then integrity of [e],, at worker w is
(I v w). Translation function is defined over expressions, types, memory
locations, and security labels.

e Replication Scheme: W is called 'replication scheme’ which represents the
integrity (and availability) required for the computation to be successful.
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e If an insufficient number of workers have latest data then their caches are
updated and the execution is restarted from the beginning.

e Multiple workers need to come to a consensus on their logs to commit the
changes. In this example (A A B) vV (B A C) V (A A C) specifies that at least
two of the workers must have consistent (and available) log entries.

e Worker B is unavailable but still the commit is successful as combined trust
from A and C is enough to prove the correctness of the result.
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= (A A B A C) will not tolerate failure of B but it gives more computational
mtegrlty, while W = (A v B Vv C) will tolerate failure of two workers among
A,B and C but provides lesser computational Integrity.

e Programmers need to choose W wisely based on the requirements of the
application they want to run.

e Two kinds of operational semantics:

1. Global semantics: (e, Z,L,c) — (¢, 2/, L, c)
2.Local semantics: (e, Z, L[w], w) — (¢, 2/, L[w]’, w)

e Sync evaluation rules

1.{synce@W : Z[ ], Z,[ 1. ¢} — (synce@W : Z[[e],, @w:...[e],, @wn], Z,[ 1. ¢)
where {wy, ..., w, } € flatten(W)

2.1f (synce@W : Z[...e;@w;...], Z, L, c) = (synce@W : Z[...e/@w;...], Z', L', ¢)
then (e, Z, L[w;], w;) — (ei’, >, Llwi]’, wy)

3.(synce@W : Z[...[v],,@w;...], %, L, c) = (v, Z’,[ ], c) - consensus on result.

4. (synce@W : Z[...e;@w;...], Z, L, c) — (sync e@W : Z[ [e],, @wx...[e],, @w,], Z’, [ ], ¢)
restart computation.

e Our typing judgment looks like [ pc;w;ZFe: T

e Sync typing-rule :
Vw; € flatten(W).T"; pc;; wi; Z = [e],, : [T],, FpcEpc FW'EZ ci=pc

[ pc;c;ZFsynce@W :Z[ ] : T

e Instantiating Flowstate with consensus based systems and protocols like
Blockchain, State Channels, BFT etc.

e Beyond reads and writes: what can we do with higher-level abstractions for

distributed operations ?
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