Flowstate: A Language for Secure Replicated Computation

Privanka Mondal Owen Arden
pmondal@ucsc.edu owen@soe.ucsc.edu

University of California, Santa Cruz

e Interactions in a distributed system span over multiple trusted domains.

e Interactions within a trusted domain are secure.

e There is mutual distrust among independent domains.

e Information flow and trust ordering can be used to prevent data leaks.

\

4 Workers

Stores

e = let x =!p 1in
let y = !Iqg 1in

if (xzy)
then r=x

else r=y

e Problem 1: What if none of the workers is trusted enough to execute e ?

~Ed N
lefereﬁ't“t”r‘l'js'tédﬂd omains

Workers
v

Stores

-

Workers

Stores

e Problem 2: What if the intended worker is unavailable ?

Workers

@

@‘\f

Problem 1

e Replicate the computation at multiple workers.

e |t increases trust, distribute the authority and increases availability.

Workers

)

@

. 4 /
Clent | _ 8<% __ | == .@
~
B e

Problem 2

e Problem: Can not replicate the expression e directly, as the workers are having
different integrity labels.
Solution: Expression e is attenuated to the integrity level of the workers with a
translation function []. If integrity of e is | then integrity of [e],, at worker w is
(I v w). Translation function is defined over expressions, types, memory
locations, and security labels.

e Replication Scheme: W is called 'replication scheme’ which represents the
integrity (and availability) required for the computation to be successful.

W = ((AAB)V(BAC)V(ANC)) Workers

anbrncnw c Z (f_ compute on cached data first _E\
a = {(AVBVC), (BAC)V(AAC)} o q ot 0 g

B = {(AVBVC), (AAB)V(BAC)V(AAC)} [Ceres = [I] |]qu|4:sz:-|mu |]]
-‘.IEIJﬁE E Tc HIHBI E TI

[[(1.1)] {431I{u11]] .
L* wurkers request mher
worlkers for data

read (cache miss/stale data)

i e — 3
i ||

cluster 2 cluster 3

Stores

...

e If an insufficient number of workers have latest data then their caches are
updated and the execution is restarted from the beginning.

e Multiple workers need to come to a consensus on their logs to commit the
changes. In this example (A A B) vV (B A C) V (A A C) specifies that at least
two of the workers must have consistent (and available) log entries.

e Worker B is unavailable but still the commit is successful as combined trust
from A and C is enough to prove the correctness of the result.

' r
bzt e calen I]] [l[{Z.E}I (KD I]]B
]
logA: [EE”I1=1:3}J{F=q=1’,ﬂ}{mn:r:'.h,:;Z[Ljl

q
I
A
A P q
I]E{z,allﬁ,qlm,u I C
C

logB: missing/different \ I]:E:I]C /
logC: [E{r:p=1,3}{r=q=]',4}-{l'=z=T,1}]]C

commit * commit

g Workers N\

compute on cached data first

p P q

= (A A B A C) will not tolerate failure of B but it gives more computational
mtegrlty, while W = (A v B Vv C) will tolerate failure of two workers among
A,B and C but provides lesser computational Integrity.

e Programmers need to choose W wisely based on the requirements of the
application they want to run.

e Two kinds of operational semantics:

1. Global semantics: (e, Z,L,c) — (¢, 2/, L, c)
2.Local semantics: (e, Z, L[w], w) — (¢, 2/, L[w]’, w)

e Sync evaluation rules

1.{synce@W : Z[], Z,[1. ¢} — (synce@W : Z[[e],, @w:...[e],, @wn], Z,[1. ¢)
where {wy, ..., w, } € flatten(W)

2.1f (synce@W : Z[...e;@w;...], Z, L, c) = (synce@W : Z[...e/@w;...], Z', L', ¢)
then (e, Z, L[w;], w;) — (ei’, >, Llwi]’, wy)

3.(synce@W : Z[...[v],,@w;...], %, L, c) = (v, Z’,[], c) - consensus on result.

4. (synce@W : Z[...e;@w;...], Z, L, c) — (sync e@W : Z[[e],, @wx...[e],, @w,], Z’, [], ¢)
restart computation.

e Our typing judgment looks like [pc;w;ZFe: T

e Sync typing-rule :
Vw; € flatten(W).T"; pc;; wi; Z = [e],, : [T],, FpcEpc FW'EZ ci=pc

[pc;c;ZFsynce@W :Z[] : T

e Instantiating Flowstate with consensus based systems and protocols like
Blockchain, State Channels, BFT etc.

e Beyond reads and writes: what can we do with higher-level abstractions for

distributed operations ?

[1] Andrew Myres. Lantian Zheng.
A language-based approach to secure quorum replication, plas’14.

[2] Jed Liu et. al.
Fabric: A platform for secure distributed computation and storage,sosp,20089.

[3] Zdancewic et. al.
Secure program partitioning.

1/1

mailto:pmondal@ucsc.edu
mailto:owen@soe.ucsc.edu

