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INTRODUCTION

Building decentralized distributed systems is very difficult
because of problems like host failures, network partitions,
malicious hosts etc. Confidentiality, Integrity and Availability
policies can be used to make a distributed system secure.
But enforcing these policies are hard as the participants have
mutual distrust and absence of an universally trusted party
makes it even harder. Some of these problems are already
solved in isolation, but bringing those techniques together is
a complicated task. Our goal is to build a general purpose
programming model which enforces C,I,A policies in a de-
centralized, distributed system and also make the computation
fault tolerant. We call our programming model Flowstate,
where participating nodes, individually execute translated ver-
sions of an expression atomically and reach consensus on the
result based on a parameter specified by the programmer.
Flowstate is designed based on distributed shared memory
and optimistic concurrency control model and it is compatible
with any quorum based replication protocol. One of the
novel approaches in this work is this model supports secure
information flow to and from multiple clusters at the same
time. The computation nodes, which we call worker nodes,
and the memory locations at replicas, which we call stores, are
annotated with integrity, confidentiality and availability labels
to enforce secure information flow and guarantee availability.
Each worker maintains a log during the computation. A suffi-
cient number of these logs are required as a proof of combined
authority from the workers to commit the changes at the stores.
The expression replicated at the workers is confidential i.e it
is encrypted. The workers are able to execute the expression
only if they have the authority to read it. After the computation
each worker adds its digital signature to the end result and
the logs as a proof that those are computed by them. In
our work computational availability is different from data
availability. The availability of the end results depend both on
computational and data availability. Computational availability
is ensured by replicating the computation in to multiple
workers, while data availability is ensured by replicating data
in to a quorum of stores.

CONTRIBUTIONS

System Design There can be three kinds of nodes in our
system. A Client node requests a set of workers to compute
an expression e and return the answer within a certain amount
of time. There can be many clients in the system but every

client communicates with the workers independent of each
other. Worker nodes are the execution nodes. Reads and
writes done by the workers happen inside transactions and
are recorded in their logs. When an execution ends, the
worker logs should match, although the integrity label may
differ. These logs are combined together to commit values
to the storage nodes. The workers choose a leader amongst
themselves who is responsible for coordination among the
workers and communicating with the stores. Each worker has
its local cache. Storage nodes or stores are distributed into
clusters. Each cluster replicates a memory locations into a
quorum of nodes. The nodes in a cluster choose a leader
amongst themselves. A worker requests a store for a memory
location when a cache miss happens. These requests are
always forwarded to the leader in that cluster. Each memory
location stores a < value, version > pair. The version is
incremented by one when the value is updated. We use shared
memory model in our language design. The cache memories
at workers and the memories at the storage nodes together
build the shared memory. The execution at the workers follows
optimistic concurrency control model. The workers assume
their caches are up to dated and they start computation, of an
expression e, right away. There can be two instances where
Flowstate might update the worker caches and resume the
execution of e from the beginning. The best scenario would
be the following two cases never happen.

1) When Flowstate system finds that the workers’ results di-
verge from each other to such an extent that consensus on
logs can never happen, the worker caches are aggregated
and the execution of e starts from the beginning.

2) Committing the end results to the stores fail when the
workers reached consensus on the logs but the compu-
tation was done on old data versions. Thus the worker
caches are updated with the latest values from the stores
and the execution of e starts again from the beginning.

The Flowstate Language Flowstate has two kinds of opera-
tional semantics: global and local. A Flowstate program starts
from a client host and then gets replicated to the worker nodes.
The distributed execution which happens from the client’s
perspective is captured in the global semantics. The execution
which happens at each individual worker node is captured
in the local semantics. An expression that the client initiates
executing looks like: sync e@W . Here e is the expression that
the worker nodes should execute individually, and W is the
consensus parameter. This W specifies how much fault the
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Fig. 1: Steps while executing a Flowstate expression e in a distributed, decentralized environment.

system should tolerate, or in other words how much computa-
tional availability is required for the execution to pass. In the
example in fig.1 we have W = (A∧B)∨ (B ∧C)∨ (A∧C),
that means any two of A,B, and C need to compute same
results. Thus if one of the nodes is unavailable or computes
wrong result ,the overall computation does not fail. The input
program e and the consensus parameter W are the inputs
from the programmer. The expression that the client wants
to execute might have integrity more than any worker in
expression W . So the workers execute a translated version
of e that is attenuated to their integrity label. We use a
translation function J Kw to translates the expression’s integrity
while executing it at w. To maintain consistency of integrity
of expressions through out the execution we extended this
translation over memory, logs, and types. A memory location
of type τ when stored at worker w’s cache, its type becomes
JτKw, i.e. Jmτ Kw = mJτKw . When sync e@W is executed at
client, expression JeKA is executed at A, JeKB is executed
at B and JeKC is executed at C. At the end all the workers’
logs are combined to commit the changes at the stores using a
replication protocol. The Flowstate type system checks if the
program has any information flow violation during compile
time. We prove that results computed by a Flowstate program
in a distributed environment is same as the results computed
by the same program in a trusted third party.
Example Fig.1 shows different steps of executing an expres-
sion sync e@W . Different kinds of arrows represent different
kinds of communications between the nodes. C is the leader
among the workers for this particular instance. Expression e
refers to three different memory locations x,y and z from
three different clusters. x,y and z have same confidentiality,
(A∨B∨C). This means x,y and z can be read by policies with

confidentiality ≥ (A ∨ B∨)C. x and y have same integrity,
(A ∧ B). z has integrity ((A ∧ B) ∨ (B ∧ C) ∨ (A ∧ C)),
which means any two of A,B and C’s digital signature is
enough to update z. Data availability of x, y and z are different
as they are stored in different cluster(shown in fig.1). The
workers read from x and y and writes to z. They need to
read z also to know its version number (although the logs
do not reflect it because it is implicit that when you do a
write you do a read of that location). Initially z was stored
at stores Q1, Q2 and Q3 in cluster 3. The arrows are marked
with sequence numbers to denote the order of the steps. (1)
The client replicates execution of e at A, B and C (nodes
are named after the policies they support). (2) Cache miss
happens at A for x, thus a read from cluster 1 takes place. (3)
The caches of the workers do not agree, so cache aggregation
happens. (4) The workers fail to commit as they computed
e on an older version of y, so cache updates happen. (5)
Workers again compute e on updated cache. C being the
leader sends the combined logs to the clusters to commit
the results. Once the commit is successful the caches and the
clusters are updated with z’s new value. The end results are
not reflected in the caches due to lack of space. In step 5
commit messages are sent to all the three clusters. It is shown
that B’s log is missing. But that does not affect the commit,
as logs from A and C are sufficient to proof enough integrity
((A ∧ C) ≥ γI = ((A ∧B) ∨ (B ∧ C) ∨ (A ∧ C))) to update
z at cluster 3(in stores Q4, Q5 and Q2). One thing to notice
is that the availability of the execution depends on availability
of W and availability of the memory locations x, y and z at
their respective clusters.


